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Abstract

The ability to use diagnostics is not limited to ultrasonic meters: the same opportunity can arise with differential-pressure meters such as orifice plates.  The diagnostic parameter considered in this paper is the pressure loss ratio (the quotient of the pressure loss from upstream of the orifice to 6D downstream and the differential pressure), which is used by ‘Prognosis’, produced by Swinton Technologies.
Computational Fluid Dynamics (CFD) has been used to calculate the discharge coefficients and diagnostic parameters for axisymmetric flows, a non-swirling asymmetric flow and a swirling asymmetric flow and for a fully developed flow with a deposit on the orifice plate front face.  It has been shown using CFD that except in strongly swirling flow the change in discharge coefficient is strongly correlated with the change in pressure loss ratio: this work confirms the ‘Prognosis’ method.  
The formula for pressure loss ratio in ISO 5167-2:2003 is based on a strong theoretical foundation; nevertheless, it is shown here that if the pressure loss is measured from an upstream flange tapping a correction is required: the correction is small for ( ( 0.5.  Moreover, from the formula for pressure loss ratio with the correction, it can be deduced that if an upstream flange tapping is used the effect of a fault on the pressure loss ratio depends on whether the fault is upstream of the orifice plate or at the plate itself.  The theoretical relationship between change in discharge coefficient and change in pressure loss ratio is in good agreement with the CFD analysis conducted.


1. Introduction
Differential pressure meters, comprising orifice plates, Venturi tubes and cone meters have been and remain the group of flowmeters most commonly used in industry.  Orifice plates in particular provide the mainstay of gas fiscal metering systems worldwide.  While ultrasonic meters have been installed in many installations in recent years, because they have a wider flow range and provide no obstruction to the flow, orifice plates continue to serve a useful function owing to their advantage of not requiring flow calibration and of having a dependence on the square root of density to provide mass flow (rather than the mass flow being directly proportional to the fluid density).
One of the advantages of an ultrasonic flow meter is its ability to provide additional diagnostic information on the nature of the flow and the condition of the meter.  This information can be used to check for the presence of additional uncertainty in the measured flow caused by, for example, swirl induced by upstream flow disturbances, a change in pipe roughness or damage to or degradation of the transducers. The ability to provide diagnostics is not limited to ultrasonic meters: the same opportunity can arise with differential pressure meters.  This has been known for many years.  In 1986 Martin [1] showed that the use of an additional upstream pressure measurement would give the possibility of correcting the measured flowrate to account for the effect of different upstream installations.  He measured the ratio of the pressure rise into the upstream corner of an orifice plate to the differential pressure: a change in this pressure rise ratio is proportional to the change in discharge coefficient due to certain upstream flow conditions.  In more recent years Steven [2] and Skelton et al [3] have shown the benefits of using an additional pressure tapping around six pipe diameters (6D) downstream of an orifice plate so that the permanent pressure loss can be combined with the differential pressure to give information on the acceptability of the measurement, as departures from the anticipated pressure loss ratio can be attributed to different meter fault conditions or potential errors in measurement.  This principle can be extended to other differential pressure devices such as Venturi meters and cone meters.  This finding has been developed into a commercial software monitoring tool called ‘Prognosis’, which monitors the different measurement values, compares them with predicted or baseline measurements and then indicates departures from the norm as a diagnostic tool. 

2. Objectives and approach
The main objective of this project for National Grid was to investigate the use of an additional pressure loss measurement in an orifice plate installation to generate diagnostic information.  The usual differential pressure across the orifice plate was measured using flange tappings, and an additional differential pressure measured from the upstream (and the downstream) tapping to an additional tapping located 6D downstream, around the first location at which the pressure has recovered.  A particular question to be addressed was whether a change in the discharge coefficient could be related to a change in the measured ratio of pressure loss to differential pressure.  This work examined differences in the sensitivity of the measurements depending on the pairs of tappings used.
In many situations it is necessary to use a theoretical value of pressure loss ratio in fully developed flow as a baseline.  Accordingly this value was considered first.

3.  The pressure loss ratio in fully developed flow
The pressure loss ratio is well predicted by this equation, based on the momentum theorem [4], and given in section 5.4.1 of ISO 5167-2:2003 [5]:
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There is no stated uncertainty for Equation (1).  There is very little published information on pressure losses.  One set of data (using flange tappings) is given in Steven et al [6].  The deviations of the equations from the data for the two equations in ISO 5167-2 are shown in Figure 1.  C has been taken as the discharge coefficient using flange tappings.
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Figure 1:  Pressure loss ratio: measurements from Steven et al [6]
Figure 1 shows that the equation in 5.4.1 of ISO 5167-2: 2003 is much superior to the simpler equation given in section 5.4.2 of ISO 5167:2003.  
The momentum theorem is obtained by integrating the equation of motion over a fixed volume so that 
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where ρ is the density, ui the velocity in the xi-direction, Fi the body force, (ij the stress tensor and D/Dt the derivative following the motion of the fluid, becomes, on expanding the derivative following the motion of the fluid and using mass conservation and the divergence theorem,
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where the fixed volume V is bounded by surface A, with the outward pointing unit normal in the xi-direction ni.
The stress tensor consists of two terms: the pressure term is sufficient for the approximation here, so (ij = ‑p(ij. The flow is steady and the body force (gravity) makes a contribution to the pressure that will make no contribution to the pressure loss.  
Equation (3) is applied to the volume marked V on Figure 2, and from this point onwards calculations are performed for incompressible flow.  

[image: image5]
Figure 2  Flow through an orifice plate
Then, assuming that the pressure has a single value on the back of the orifice plate, on the edge of the orifice jet as far as the vena contracta and at the vena contracta (the areas marked ‘p2’ in Figure 2), and using the divergence theorem
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where Ac and Ap are the area of the vena contracta and of the pipe, respectively, uc and up are the mean velocity in the vena contracta and in the pipe, respectively, and p2 and p3 are the pressure immediately downstream of the orifice and after pressure recovery, respectively.
In addition Bernoulli’s equation applies between an appropriate location upstream of the orifice plate and the vena contracta:
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where p1 is the pressure around 1D upstream of the orifice.
The orifice discharge-coefficient equation (Equation (1) of ISO 5167-2:2003) can be expressed as:
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where uo is the mean velocity in the orifice.  Mass conservation between upstream of the orifice plate, the orifice and the vena contracta gives:
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Equations (4) – (7) give:
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where 
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 is the pressure loss (from D upstream to 6D downstream).  
Equation (8) can be used as long as the upstream tapping is appropriately located upstream of the orifice: 1D will be sufficient.  A flange tapping in a 100 mm (4”) diameter pipe (as used for the experiment in Steven et al [6]) will give a slightly higher apparent pressure loss.  It is necessary to calculate a correction for use where the measured differential pressure, 
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, are obtained using an upstream tapping located less than 1D upstream of the orifice.  If the pressure rise between D upstream and the upstream tapping is 
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It is not easy, given the assumptions in the use of the momentum theorem, to include a term for the location of the downstream flow-measurement tapping; nevertheless, it is possible to proceed as follows (with no correction for downstream tapping location): 
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where 
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 is the differential pressure from D upstream to the actual tapping downstream.  Then
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 is taken from Equation (8).  Of the three standard tapping pairs D and D/2 tappings are the most suitable for determining C for use in Equation (8).  
The difference between the discharge coefficient using a flange tapping (or a D and D/2 tapping) and that using a corner tapping is 
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where L1 is the quotient of the distance of the upstream tapping from the upstream face of the plate and the pipe diameter.  This formula is for high Reynolds number, and is found by working back from the Reader-Harris/Gallagher (1998) Equation [5].
Thus the difference between the discharge coefficient using a flange tapping and that using a tapping 1D upstream of the orifice plate is (at a high Reynolds number):
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and, where the pressure rise from the D tapping upstream to the flange tapping is prise, it is given by:
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The ratio 1.033 is included because in theory the total tapping term in an orifice discharge coefficient equation should be the sum not only of the upstream and the downstream terms but also of a product term.  This is because the discharge coefficient depends on the reciprocal of the square root of the differential pressure [7].  In practice the product term is not included in the equation, and, to compensate, the upstream tapping term in the equation is very slightly smaller than the true upstream term.  

Calculating the pressure loss ratio using Equations (11), (8) and (14) gives the deviations shown in Figure 1.  An additional pipe friction term may be desirable, and is considered in [8].
An equation published by Steven et al. [9] is also shown in Figure 1: it is
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4  CFD: changes in velocity profile and their effect on the discharge coefficient and the diagnostics
Computational Fluid Dynamics (CFD) simulations (runs) were performed in a 200 mm straight pipe installation with an orifice plate with diameter ratios (() of 0.6 and 0.75 and a pipe Reynolds number of 107.  The Realizable k-( turbulence model was used.  
A key stage in the CFD simulations was to obtain an adequately grid-independent solution: this required an adequately refined grid in the neighbourhood of the orifice plate’s sharp edge and of the pipe inside wall.

The following flow and fault conditions were then generated:
Axisymmetric but not fully developed flow upstream

· A flat flow profile produced by a 250 mm to 200 mm concentric reducer 5D upstream of the orifice plate 

· A peaked flow profile produced by a 150 mm to 200 mm concentric expander 11D upstream of the orifice plate

· A rough pipe (k = 0.2 mm) upstream of the orifice plate

Asymmetric non-swirling flow

· Double vortex swirl produced by a single 90̊ bend (radius 1.5D) 13D upstream of the orifice plate

Asymmetric swirling flow

· Single vortex swirl produced by two bends (radii 1.5D) in perpendicular planes 25D upstream of the orifice plate

Deposit on face
· A 1.5 mm deposit on the upstream face of the orifice plate leaving a clean ring (of width 5.25 mm for ( = 0.6 and 4.8 mm for ( = 0.75).
NOTE: calculations with a reversed plate were also undertaken but are not included here.
The shift in discharge coefficient as a function of the change in pressure loss ratio is shown in Figures 3 to 6. 
In non-axisymmetric cases the calculations were carried out with four pairs of tappings at right angles to one another.  The individual single bend results do not agree with the axisymmetric results as well as their mean does.  The results from the swirling flow from the double bend configuration do not agree with the axisymmetric results, even on the mean.  Which upstream pressure tapping is used also makes a significant difference since the upstream pressure rise into the corner and the pressure loss from D upstream to 6D downstream are both involved.  Comparisons are made in Figures 3 to 6 with the analysis of Section 5.
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Figure 3:  Shift in discharge coefficient using D and D/2 tappings v. change in pressure loss ratio
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Figure 4  Shift in discharge coefficient using D and D/2 tappings v. change in pressure loss ratio
[image: image27.wmf]2

/

&

D

D

p

D

D

v

: ( = 0.75
[image: image28.emf]-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

-0.01 0 0.01 0.02 0.03

% Shift in discharge coefficient (flange tappings)

Change in upstream pressure ratio (p

Fup

-p

6Ddown

)/

D

p

flange

Axisymmetric and mean single bend

Double bend

Single bend

Deposit on face

Linear (Section 5: error at plate)

Linear (Axisymmetric and mean single bend)

Linear (Axisymmetric)

Linear (Section 5: error upstream)


Figure 5  Shift in discharge coefficient using flange tappings in 200 mm diameter pipe v. change in pressure loss ratio 
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 is the measured pressure loss ratio using flange tappings and an additional downstream tapping 6 D downstream.
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Figure 6:  Shift in discharge coefficient using flange tappings in 200 mm diameter pipe v. change in pressure loss ratio 
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Figures 3 to 6 make it clear that in many cases the shift in discharge coefficient can be predicted if the change in the diagnostic measurement is known.  However, it is easier to predict using D and D/2 tappings because, especially for ( = 0.75, the upstream pressure rise (from the upstream D tapping to the upstream flange tapping) depends not only on the size of the error but also on its location (at the plate or upstream): see the different lines for Section 5 in Figure 6.
5  Shift in C v change in pressure loss ratio from the theoretical model

It is possible to differentiate the equations in Section 3 with respect to C.  

Differentiating Equation (8) gives: 
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which leads to:
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Lines based on Equation (17) are included in Figures 3 and 4.
The calculations above assume that the pressure loss is measured from D upstream; if the pressure loss is measured from another tapping (e.g. a flange tapping in 200 mm (8”) diameter pipe) upstream a further analysis is required.  


[image: image35.wmf]2

1

1

1

1

÷

÷

ø

ö

ç

ç

è

æ

D

+

÷

÷

ø

ö

ç

ç

è

æ

D

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

D

D

-

+

÷

÷

ø

ö

ç

ç

è

æ

D

D

¶

¶

÷

÷

ø

ö

ç

ç

è

æ

D

+

=

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

è

æ

D

+

D

+

D

D

¶

¶

=

÷

÷

ø

ö

ç

ç

è

æ

D

D

¶

¶

Dtodn

rise

Dtodn

rise

Dtodn

rise

Dtodn

rise

Dtodn

rise

Dtodn

measured

measured

p

p

p

p

C

p

p

C

p

p

p

p

p

p

p

C

p

C

v

v

v

v

(18)

[image: image36.wmf]÷

÷

ø

ö

ç

ç

è

æ

D

¶

¶

Dtodn

rise

p

p

C

 depends on whether the cause of the error is upstream of the orifice (e.g. a partially blocked flow conditioner) or near the orifice edge (e.g. a deposit on the upstream face of an orifice plate).  If it is the former then Martin [1] can be used to estimate the effect.  From Martin for β = 0.71 and 0.8:
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where the subscript F denotes values at the flange tappings.  This equation is not inconsistent with Martin’s data for β = 0.5, and it has been assumed that this formula holds for all β.  So:
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If the cause of the error is upstream of the orifice plate the calculated values have been obtained using Equation (20) and are shown in Figures 5 and 6.  

If the cause of the error is near or at the orifice edge prise will be approximately constant while ΔpDtodn and CF change:

Then
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Lines based on Equation (21) are included in Figures 5 and 6.  Agreement between CFD and this analysis is good.
6  Practical comparisons
6.1
Introduction

The use of the measured pressure loss ratio and of the measured pressure recovery ratio (see 6.3) is discussed here using flange tappings in 200 mm (8”) diameter pipe with β = 0.6. The differential pressure across the orifice plate is assumed to be in the range 100 to 500 mbar.
The measured pressure loss ratio is the ratio of the differential pressure measured between the upstream (flange) tapping and the additional (6D) downstream tapping to the measured differential pressure using flange tappings; the measured pressure recovery ratio is the ratio of the differential pressure measured between the downstream (flange) tapping and the additional (6D) downstream tapping to the measured differential pressure using flange tappings. 
6.2
Using the measured pressure loss ratio

Figure 5 shows that for a 1% shift in discharge coefficient (C) the corresponding change in measured pressure loss ratio is around -0.0027 (from the line labelled ‘Linear (Section 5: error at plate)’).  This is smaller than the estimated uncertainty in the predicted measured pressure loss ratio in good conditions.  As a result it is unlikely that an error in C of this magnitude could be demonstrated by simply measuring the pressure loss ratio once and comparing with a baseline.
Assuming, however, that a value of pressure loss ratio was measured when the system was new and no fault was anticipated, it may be possible that such a small change in pressure loss ratio may be measurable if subsequent fault conditions develop.  To achieve this it is necessary to measure a difference in pressure loss in the range of 0.27 to 1.35 mbar.  If the pressure loss is measured using, say, a 0 to 100 mbar and a 0 to 500 mbar transmitter, each with an uncertainty of 0.1% of full scale, this difference can be measured at some flowrates but probably not at others.  If an uncertainty of 0.1% of reading can be obtained this difference can be measured at all flowrates.
6.3
Using the measured pressure recovery ratio

A second option to provide diagnostic information is to use the measured pressure recovery ratio, which can be advantageous.  Whereas the absolute change in measured pressure recovery ratio and that in the measured pressure loss ratio are equal in magnitude, the relative change in measured pressure recovery ratio is approximately twice as large as the relative change in measured pressure loss ratio for β = 0.6 when a fault condition exists.  In the case of the example here, a fault condition still cannot be demonstrated by simply measuring the pressure recovery once and comparing with a prediction.  Any change in the condition of the installation, however, will be observed by a change in pressure recovery in the range 0.27 – 1.35 mbar.  Hence by using, say, a 0 to 100 mbar and a 0 to 200 mbar transmitter each with an uncertainty of 0.1% of full scale, it should be possible to detect a change at all flowrates.
6.4
General

If an error of 2% were considered then, in the case of the measured pressure loss ratio approach (or the measured pressure recovery ratio approach), the change in pressure loss ratio (or pressure recovery ratio) may be large enough to be discerned by making a single measurement and comparing it with a predicted value.  It would be good to make a set of measurements of pressure loss ratio using a range of orifice plates in different pipe sizes to determine the variation in measured pressure loss ratio in good flow conditions.  
7  Conclusions
It has been shown using CFD that the change in pressure loss ratio is strongly correlated with change in discharge coefficient: the ‘Prognosis’ method is confirmed by this work.  However, this does not apply in strongly swirling flow; so a change in the discharge coefficient due to the presence of swirl cannot be calculated from ‘Prognosis’ or equivalent diagnostic methods.  Nevertheless, although this work shows that this diagnostic method will not give an estimate of shift if there is a swirling flow, it will display a change in pressure loss ratio and thus display a potential problem. 
If flange or corner tappings are used, an error due to an axisymmetric upstream disturbance (due, for example, to pipe roughness) and an error due to a rough orifice plate face have different effects on the ratio of the change in the measured pressure loss ratio to the change in discharge coefficient.
To give a single predicted value for the ratio of change in discharge coefficient to change in measured pressure loss ratio, the solution might be to use an additional pressure tapping located 1D upstream of the orifice plate even when flange (or corner) tappings are used for the ‘normal’ differential pressure. 
An error in discharge coefficient can be predicted from a single measurement of pressure loss ratio if the error is sufficiently large.  If the pressure loss ratio is known for an orifice plate in good flow conditions, then a subsequent error in discharge coefficient for that meter can be more accurately predicted than if no baseline measurement of pressure loss ratio were available.  In many cases, more discrimination may be obtained by measuring the pressure recovery ratio because the pressure recovery is smaller than the pressure loss.  
Where flange tappings are used without a measured baseline the formula in 5.4.1 of ISO 5167-2:2003 gives quite good results for diameter ratios up to around 0.5.  Above that the effect of upstream tapping location becomes more significant.  ‘Prognosis’ does not account for the change in pressure loss ratio due to pipe size (i.e. due to tapping location).  A model to allow for the effect of tapping location on pressure loss ratio has been derived here.
This paper gives the theoretical underpinning that was more fully investigated in the experimental work to be presented [8].  
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